A Span-based Linearization for Constituent Trees

Yang Wei, Yuanbin Wu, Man Lan

- East China Normal University School of Computer Science and Technology
 - godweiyang@gmail.com

CKY-style

Efficiency

Transition-based

shift shift reduce shift reduce

Efficiency

Sequence Labeling/Seq2seq

Efficiency

Other Local Models

Our Linearization

Accuracy

Tree Reconstruction

Tree Reconstruction

Alg	orithm 2 Tree reco
1:	function TREE(<i>i</i> ,
2:	if $i+1=j$ th
3:	node \leftarrow Le
4:	else
5:	$k \leftarrow \max \cdot$
6:	$\text{child}_l \leftarrow T$
7:	child _r \leftarrow 7
8:	node \leftarrow N
9:	end if
10:	return node
11:	end function

onstruction.

 $j, \mathcal{D})$

nen

 $\operatorname{eaf}(w_j, \ell(i, j))$

$$\{k' \mid d_{k'} = i, i < k' < j\}$$

$$\mathsf{REE}(i, k, \mathcal{D})$$

$$\mathsf{REE}(k, j, \mathcal{D})$$

$$\mathsf{ode}(\mathsf{child}_l, \mathsf{child}_r, \ell(i, j))$$

• Decoder

$$\begin{split} \boldsymbol{l}_{i} &= \mathrm{MLP}_{l}(\boldsymbol{h}_{i}), \quad \boldsymbol{r}_{i} = \mathrm{MLP}_{r}(\boldsymbol{h}_{i}).\\ \boldsymbol{\alpha}_{ij} &= \boldsymbol{l}_{i}^{\top} \mathbf{W} \boldsymbol{r}_{j} + \boldsymbol{b}_{1}^{\top} \boldsymbol{l}_{i} + \boldsymbol{b}_{2}^{\top} \boldsymbol{r}_{j},\\ P(i|j) &= \mathrm{Softmax}_{i}(\boldsymbol{\alpha}_{ij}), \forall i < j.\\ \boldsymbol{d}_{j} &= \arg\max_{i} P(i|j), \forall i < j.\\ P(\ell|i,j) &= \mathrm{Softmax}(\mathrm{MLP}_{\mathrm{label}}([\boldsymbol{l}_{i};\boldsymbol{r}_{j}]))_{\ell}. \end{split}$$

Parser

$$egin{aligned} &[m{e}_i;m{c}_i;m{p}_i].\ &ec{m{h}}_i;ec{m{h}}_{i+1}]. \end{aligned}$$

Training Objective

Parser

$\mathcal{L} = -\frac{1}{n} \left(\sum_{i=1}^{n} \log P(d_i|i) + \sum_{(i,j,\ell) \in \mathcal{T}} \log P(\ell|i,j) \right).$

label loss

CKY-style decoding

$\mathcal{G}(i,j) = \max \{ P(i|k) \times \mathcal{G}(k,j) \mid i < k < j \},\$

Greedy decoding

 $k \leftarrow \arg \min d_{k'}.$ k'

Tree Inference

 $k \leftarrow \max\{k' \mid d_{k'} \le i, i < k' < j\}.$

 $k \leftarrow \max\{k' \mid d_{k'} \le i, i < k' < j\}.$

The second se

 $k \leftarrow \max\{k' \mid d_{k'} \le i, i < k' < j\}.$

k'

The second se

To TARANTIE STARTING SAL HOUSE HOUSE

dk' A TANK A TANK

 $k \leftarrow \arg \min d_{k'}.$ k'

La Date Ministration and the same and the same and the second same so the same and the same and the second

dk' k'

 $k \leftarrow \arg \min d_{k'}.$ k'

Normalization

Results on PTB

ModelLRLPF1Global Model90.693.091.Stern et al. (2017a)90.693.091.Gaddy et al. (2018)91.892.492.Kitaev and Klein (2018a)93.293.993.Zhou and Zhao (2019)93.693.993.Local Model93.693.993.Liu et al. (2018)90.Liu et al. (2017)91.Ma et al. (2017)91.Shen et al. (2018)91.792.091.Liu and Zhang (2017a)91.Hong and Huang (2018)91.592.592.Dyer et al. (2016) [♡] 92.Stern et al. (2017b) [♡] 92.692.692.Our Model92.392.992.Our Model93.394.193.				
Global ModelStern et al. (2017a)90.693.091.Gaddy et al. (2018)91.892.492.Kitaev and Klein (2018a)93.293.993.Zhou and Zhao (2019)93.693.993.Local Model93.693.993.Liu et al. (2018)90.Liu et al. (2017)91.Ma et al. (2017)91.Shen et al. (2018)91.792.091.Liu and Zhang (2017a)91.Hong and Huang (2018)91.592.592.Teng and Zhang (2018)92.292.592.Dyer et al. (2016) [♡] 92.Stern et al. (2017b) [♡] 92.692.692.Our Model92.392.992.Our Model93.394.193.	Model	LR	LP	F1
Stern et al. $(2017a)$ 90.693.091.Gaddy et al. (2018) 91.892.492.Kitaev and Klein $(2018a)^{\bigstar}$ 93.293.993.Zhou and Zhao $(2019)^{\bigstar}$ 93.693.993.Local Model93.693.993.Liu et al. (2018) 90.Liu et al. (2017) 91.Ma et al. (2017) 91.Shen et al. (2018) 91.792.091.Liu and Zhang $(2017a)$ 91.Hong and Huang (2018) 91.592.592.Teng and Zhang (2018) 92.292.592.Dyer et al. $(2016)^{\heartsuit}$ 92.Stern et al. $(2017b)^{\heartsuit}$ 92.692.692.Our Model92.392.992.Our Model93.394.193.	Global Model			
Gaddy et al. (2018)91.892.492.Kitaev and Klein (2018a)93.293.993.Zhou and Zhao (2019)93.693.993.Local Model93.693.993.Liu et al. (2019)90.Liu et al. (2018)91.Ma et al. (2017)91.Shen et al. (2018)91.792.091.Liu and Zhang (2017a)91.Hong and Huang (2018)91.592.592.Teng and Zhang (2018)92.292.592.Dyer et al. (2016) $^{\heartsuit}$ 92.Stern et al. (2017b) $^{\heartsuit}$ 92.692.692.Our Model92.392.992.Our Model93.394.193.	Stern et al. (2017a)	90.6	93.0	91.8
Kitaev and Klein $(2018a)^{\bigstar}$ 93.293.993.Zhou and Zhao $(2019)^{\bigstar}$ 93.693.993.Local Model93.693.993.Vilares et al. $(2019)^{\bigstar}$ 90.Liu et al. (2018) 91.Ma et al. (2017) 91.Shen et al. (2018) 91.792.091.Liu and Zhang $(2017a)$ 91.Hong and Huang (2018) 91.592.592.Teng and Zhang (2018) 92.292.592.Dyer et al. $(2016)^{\heartsuit}$ -92.692.6Our Model92.392.992.Our Model^{\bigstar}93.394.193.	Gaddy et al. (2018)	91.8	92.4	92.1
Zhou and Zhao (2019)93.693.993.Local ModelVilares et al. (2019)90.Liu et al. (2018)91.Ma et al. (2017)91.Shen et al. (2018)91.792.091.Liu and Zhang (2017a)91.Hong and Huang (2018)91.592.592.Teng and Zhang (2018)92.292.592.Dyer et al. (2016) \heartsuit 92.Stern et al. (2017b) \heartsuit 92.692.692.Our Model92.392.992.Our Model93.394.193.	Kitaev and Klein (2018a)	93.2	93.9	93.6
Local ModelVilares et al. (2019)90.Liu et al. (2018)91.Ma et al. (2017)91.Shen et al. (2018)91.792.091.Liu and Zhang (2017a)91.Hong and Huang (2018)91.592.592.Teng and Zhang (2018)92.292.592.Dyer et al. (2016) [♥] 92.Stern et al. (2017b) [♥] 92.692.692.Our Model92.392.992.Our Model93.394.193.	Zhou and Zhao (2019)	93.6	93.9	93.8
Vilares et al. (2019)90.Liu et al. (2018)91.Ma et al. (2017)91.Shen et al. (2018)91.792.091.Liu and Zhang (2017a)91.Hong and Huang (2018)91.592.592.Teng and Zhang (2018)92.292.592.Dyer et al. (2016) $^{\heartsuit}$ 92.Stern et al. (2017b) $^{\heartsuit}$ 92.692.692. Our Model 92.392.992. Our Model 93.394.193.	Local Model			
Liu et al. (2018)91.Ma et al. (2017)91.Shen et al. (2018)91.792.091.Liu and Zhang (2017a)91.Hong and Huang (2018)91.592.592.Teng and Zhang (2018)92.292.592.Dyer et al. (2016) $^{\heartsuit}$ 92.Stern et al. (2017b) $^{\heartsuit}$ 92.692.692. Our Model 92.392.992. Our Model 93.394.193.	Vilares et al. (2019)	_	_	90.6
Ma et al. (2017)91.Shen et al. (2018)91.792.091.Liu and Zhang (2017a)91.Hong and Huang (2018)91.592.592.Teng and Zhang (2018)92.292.592.Dyer et al. (2016) $^{\heartsuit}$ 92.Stern et al. (2017b) $^{\heartsuit}$ 92.692.692.Our Model92.392.992.Our Model93.394.193.	Liu et al. (2018)	-	-	91.2
Shen et al. (2018) 91.7 92.0 $91.$ Liu and Zhang (2017a) $91.$ Hong and Huang (2018) 91.5 92.5 $92.$ Teng and Zhang (2018) 92.2 92.5 $92.$ Dyer et al. (2016) $^{\heartsuit}$ $92.$ Stern et al. (2017b) $^{\heartsuit}$ 92.6 92.6 92.6 Our Model 92.3 92.9 $92.$ Our Model 92.3 92.9 $92.$	Ma et al. (2017)	-	-	91.5
Liu and Zhang (2017a)91.Hong and Huang (2018)91.592.592.Teng and Zhang (2018)92.292.592.Dyer et al. $(2016)^{\heartsuit}$ 92.Stern et al. $(2017b)^{\heartsuit}$ 92.692.692.Our Model92.392.992.Our Model93.394.193.	Shen et al. (2018)	91.7	92.0	91.8
Hong and Huang (2018)91.592.592.7Teng and Zhang (2018)92.292.592.7Dyer et al. $(2016)^{\heartsuit}$ 92.7Stern et al. $(2017b)^{\heartsuit}$ 92.692.692.6Our Model92.392.992.7Our Model93.394.193.7	Liu and Zhang (2017a)	-	-	91.8
Teng and Zhang (2018)92.292.592.5Dyer et al. $(2016)^{\heartsuit}$ 92.5Stern et al. $(2017b)^{\heartsuit}$ 92.692.692.6Our Model92.392.992.Our Model93.394.193.5	Hong and Huang (2018)	91.5	92.5	92.0
Dyer et al. $(2016)^{\heartsuit}$ -92.Stern et al. $(2017b)^{\heartsuit}$ 92.692.6Our Model92.392.9Our Model93.394.193.394.1	Teng and Zhang (2018)	92.2	92.5	92.4
Stern et al. $(2017b)^{\heartsuit}$ 92.692.692.Our Model92.392.992.Our Model^{\bigstar}93.394.193.	Dyer et al. (2016) [♡]	-	-	92.4
Our Model92.392.992.Our Model93.394.193.	Stern et al. $(2017b)^{\heartsuit}$	92.6	92.6	92.6
Our Model ^(*) 93.3 94.1 93.	Our Model	92.3	92.9	92.6
	Our Model [♠]	93.3	94.1	93.7

Pre-training/Ensemble/Re-ranking					
Liu et al. (2018)	_	-	92.3		
Choe and Charniak (2016)	-	-	93.8		
Liu and Zhang (2017a)	-	-	94.2		
Fried et al. (2017)	-	-	94.7		
Kitaev and Klein (2018a)	94.9	95.4	95.1		
Kitaev and Klein (2018b)	95.5	95.7	95.6		
Zhou and Zhao (2019)	95.7	96.0	95.8		
Our Model (+BERT)	95.6	96.0	95.8		
Our Model (+BERT)	95.5	96.1	95.8		

Parsing Speeds

Model	sents/sec	
Global Model		
Stern et al. (2017a)	20	
Kitaev and Klein (2018a) (w. Cython)	150	
Zhou and Zhao (2019) (w. Cython)	159	
Local Model		
Teng and Zhang (2018)	22	
Stern et al. (2017a)	76	
Liu and Zhang (2017b)	79	
Shen et al. (2018)	111	
Shen et al. (2018) (w/o tree inference)	351	
Vilares et al. (2019)	942	
Our Model	220	
Our Model [♠]	155	

In the Future

- Linguistic interpretation.
- Combine the two different linearization methods (left and right). • Apply GAT to enhance the representation, similar to []i et al., 2019].

WeChat

Contact

Homepage antulp.org

Blog godweigang.com