【每日算法Day 82】面试经典题:求第K大数,我写了11种实现,不来看看吗?

关注公众号【算法码上来】,每日算法干货马上就来!

题目链接

LeetCode 215. 数组中的第K个最大元素

题目描述

在未排序的数组中找到第 k 个最大的元素。请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

示例1

输入:
[3,2,1,5,6,4] 和 k = 2
输出:
5

示例2

输入:
[3,2,3,1,2,4,5,5,6] 和 k = 4
输出:
4

解释:

  • 你可以假设 k 总是有效的,且 1 ≤ k ≤ 数组的长度。

题解

排序

对数组从大到小排序,取第 $k$ 个元素。

或者从小到大排序,取第 $n-k+1$ 个元素。

小根堆+库函数

c++ 自带 priority_queue<int> ,可以实现小根堆。

python 自带 heapq ,可以实现小根堆,同时还自带 nlargest 函数可以直接求出前 $k$ 大元素。

然后维护一个大小为 $k$ 的小根堆,保存最大的 $k$ 个数,堆顶就是第 $k$ 大的数。新元素入堆,如果堆中元素个数大于 $k$ ,就将堆顶元素出堆。

大根堆+库函数

c++ 自带 priority_queue<int, vector<int>, greater<int>> ,可以实现大根堆。

python 没有大根堆实现。

然后维护一个大小为 $n-k+1$ 的大根堆,保存最小的 $n-k+1$ 个数,堆顶就是第 $n-k+1$ 小的数,即第 $k$ 大的数。新元素入堆,如果堆中元素个数大于 $n-k+1$ ,就将堆顶元素出堆。

小根堆+手写

利用原地算法,直接将原数组当作一个小根堆。

首先对前 $k$ 个元素建立初始堆。然后遍历后面的元素,如果大于堆顶元素的话,就和堆顶元素交换位置,并调整堆。

小根堆大小始终为 $k$ 。

大根堆+手写

利用原地算法,直接将原数组当作一个大根堆。

首先对前 $n-k+1$ 个元素建立初始堆。然后遍历后面的元素,如果小于堆顶元素的话,就和堆顶元素交换位置,并调整堆。

大根堆大小始终为 $n-k+1$ 。

快速选择

思想类似于快速排序,首先随机选取一个元素 $p$,然后将区间内元素比 $p$ 小的都放在 $p$ 左边,比 $p$ 大的都放在 $p$ 右边。

然后看 $p$ 的下标 $i$,如果 $i+1 = n-k+1$,那就说明 $p$ 就是第 $n-k+1$ 小(第 $k$ 大)的元素,直接返回即可。否则如果 $i+1 < n-k+1$,那就说明第 $k$ 大元素在 $p$ 的右边区间内,递归寻找即可。否则就在左边区间,递归寻找。

代码

排序(c++)

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {
        sort(nums.begin(), nums.end(), greater<int>());
        return nums[k-1];
    }
};

小根堆+STL优先队列(c++)

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {
        priority_queue<int, vector<int>, greater<int>> Q;
        for (auto x : nums) {
            Q.push(x);
            while (Q.size() > k) Q.pop();
        }
        return Q.top();
    }
};

大根堆+STL优先队列(c++)

class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) {
        priority_queue<int> Q;
        for (auto x : nums) {
            Q.push(x);
            while (Q.size() > nums.size()-k+1) Q.pop();
        }
        return Q.top();
    }
};

小根堆+手写(c++)

class Solution {
public:
    void adjust(vector<int>& nums, int p, int s) {
        while (2*p+1 < s) {
            int c1 = 2*p+1;
            int c2 = 2*p+2;
            int c = (c2<s && nums[c2]<nums[c1]) ? c2 : c1;
            if (nums[c] < nums[p]) swap(nums[c], nums[p]);
            else break;
            p = c;
        }
    }

    int findKthLargest(vector<int>& nums, int k) {
        int n = nums.size();
        for (int i = k/2-1; i >= 0; --i) {
            adjust(nums, i, k);
        }
        for (int i = k; i < n; ++i) {
            if (nums[0] >= nums[i]) continue;
            swap(nums[0], nums[i]);
            adjust(nums, 0, k);
        }
        return nums[0];
    }
};

大根堆+手写(c++)

class Solution {
public:
    void adjust(vector<int>& nums, int p, int s) {
        while (2*p+1 < s) {
            int c1 = 2*p+1;
            int c2 = 2*p+2;
            int c = (c2<s && nums[c2]>nums[c1]) ? c2 : c1;
            if (nums[c] > nums[p]) swap(nums[c], nums[p]);
            else break;
            p = c;
        }
    }

    int findKthLargest(vector<int>& nums, int k) {
        int n = nums.size();
        for (int i = (n-k+1)/2-1; i >= 0; --i) {
            adjust(nums, i, (n-k+1));
        }
        for (int i = (n-k+1); i < n; ++i) {
            if (nums[0] <= nums[i]) continue;
            swap(nums[0], nums[i]);
            adjust(nums, 0, (n-k+1));
        }
        return nums[0];
    }
};

快速选择(c++)

class Solution {
public:
    int partition(vector<int>& nums, int l, int r) {
        int p = l+rand()%(r-l+1), m = l;
        swap(nums[p], nums[r]);
        for (int i = l; i < r; ++i) {
            if (nums[i] < nums[r]) {
                swap(nums[i], nums[m++]);
            }
        }
        swap(nums[m], nums[r]);
        return m;
    }

    int quickSelect(vector<int>& nums, int l, int r, int k) {
        if (l == r) return nums[l];
        int m = partition(nums, l, r);
        if (k == m+1) return nums[m];
        if (k < m+1) return quickSelect(nums, l, m-1, k);
        return quickSelect(nums, m+1, r, k);
    }

    int findKthLargest(vector<int>& nums, int k) {
        int n = nums.size();
        srand((int)time(0));
        return quickSelect(nums, 0, n-1, n-k+1);
    }
};

排序(python)

class Solution:
    def findKthLargest(self, nums: List[int], k: int) -> int:
        nums.sort(reverse=True)
        return nums[k-1]

小根堆+heapq(python)

class Solution:
    def findKthLargest(self, nums: List[int], k: int) -> int:
        return heapq.nlargest(k, nums)[-1]

小根堆+手写(python)

class Solution:
    def findKthLargest(self, nums: List[int], k: int) -> int:
        def adjust(nums, p, s):
            while 2*p+1 < s:
                c1, c2 = 2*p+1, 2*p+2
                c = c2 if (c2<s and nums[c2]<nums[c1]) else c1
                if nums[c] < nums[p]:
                    nums[c], nums[p] = nums[p], nums[c]
                else:
                    break
                p = c

        n = len(nums)
        for i in range(k//2-1, -1, -1):
            adjust(nums, i, k)
        for i in range(k, n):
            if nums[0] >= nums[i]: continue
            nums[0], nums[i] = nums[i], nums[0]
            adjust(nums, 0, k)
        return nums[0]

大根堆+手写(python)

class Solution:
    def findKthLargest(self, nums: List[int], k: int) -> int:
        def adjust(nums, p, s):
            while 2*p+1 < s:
                c1, c2 = 2*p+1, 2*p+2
                c = c2 if (c2<s and nums[c2]>nums[c1]) else c1
                if nums[c] > nums[p]:
                    nums[c], nums[p] = nums[p], nums[c]
                else:
                    break
                p = c

        n = len(nums)
        for i in range((n-k+1)//2-1, -1, -1):
            adjust(nums, i, (n-k+1))
        for i in range((n-k+1), n):
            if nums[0] <= nums[i]: continue
            nums[0], nums[i] = nums[i], nums[0]
            adjust(nums, 0, (n-k+1))
        return nums[0]

快速选择(python)

import random

class Solution:
    def findKthLargest(self, nums: List[int], k: int) -> int:
        def partition(nums, l, r):
            p, m = l+random.randint(0, r-l), l
            nums[p], nums[r] = nums[r], nums[p]
            for i in range(l, r):
                if nums[i] < nums[r]:
                    nums[m], nums[i] = nums[i], nums[m]
                    m += 1
            nums[m], nums[r] = nums[r], nums[m]
            return m

        def quickSelect(nums, l, r, k):
            if l == r: return nums[l]
            m = partition(nums, l, r)
            if k == m+1: return nums[m]
            if k < m+1: return quickSelect(nums, l, m-1, k)
            return quickSelect(nums, m+1, r, k)

        n = len(nums)
        return quickSelect(nums, 0, n-1, n-k+1)

   转载规则


《【每日算法Day 82】面试经典题:求第K大数,我写了11种实现,不来看看吗?》 韦阳 采用 知识共享署名 4.0 国际许可协议 进行许可。
 上一篇
【每日算法Day 83】邻居小孩一年级就会的乘法表,你会吗? 【每日算法Day 83】邻居小孩一年级就会的乘法表,你会吗?
关注公众号【算法码上来】,每日算法干货马上就来! 题目链接LeetCode 668. 乘法表中第k小的数 题目描述几乎每一个人都用乘法表。但是你能在乘法表中快速找到第 $k$ 小的数字吗? 给定高度 $m$、宽度 $n$ 的一张 $m
2020-03-28
下一篇 
【每日算法Day 81】面试经典题:关于丑数,你真的理解为什么这么算吗? 【每日算法Day 81】面试经典题:关于丑数,你真的理解为什么这么算吗?
关注公众号【算法码上来】,每日算法干货马上就来! 题目链接LeetCode 面试题 17.09. 第 k 个数 题目描述有些数的素因子只有 3,5,7,请设计一个算法找出第 k 个数。注意,不是必须有这些素因子,而是必须不包含其他的素
2020-03-26
  目录