关注公众号【算法码上来】,每日算法干货马上就来!
今天主要讲了关于递推式和求和的一些方法,主要是成套方法。
约瑟夫环推广
上一节课说到,约瑟夫环问题的解是
\[f(n) = 2l + 1\]
其中$n = {2^m} + l$
将$n$写成二进制可以发现,$f(n)$就是$n$的二进制循环左移1位。
现在做一下推广,求解如下递推式:
\[\begin{array}{l}f(1) = \alpha \\f(2n) = 2f(n) + \beta \\f(2n + 1) = 2f(n) + \gamma \end{array}\]
可以设
\[f(n) = A(n)\alpha + B(n)\beta + C(n)\gamma \]
同样,令$n = {2^m} + l$
可以解出
\[\begin{array}{l}A(n) = {2^m}\\B(n) = {2^m} - 1 - l\\C(n) = l\end{array}\]
再从二进制角度理解一下,将递推式继续推广:
\[\begin{array}{l}f(j) = {\alpha _j},1 \le j < d\\f(dn + j) = cf(n) + {\beta _j},0 \le j \le d,n \ge 1\end{array}\]
可以得到解为
\[f({({b_m}{b_{m - 1}} \ldots {b_1}{b_0})_d}) = {({\alpha _{ {b_m}}}{\beta _{ {b_{m - 1}}}}{\beta _{ {b_{m - 2}}}} \ldots {\beta _{ {b_1}}}{\beta _{ {b_0}}})_c}\]
递推式求和
求解如下递推式:
\[\begin{array}{l}{R_0} = \alpha \\{R_n} = {R_{n - 1}} + \beta n + \gamma \end{array}\]
用成套方法求解,设
\[{R_n} = A(n)\alpha + B(n)\beta + C(n)\gamma \]
首先令${R_n} = 1$,可以得到$\alpha = 1,\beta = 0,\gamma = 0$,所以$A(n) = 1$。
再令${R_n} = n$,可以得到$\alpha = 0,\beta = 0,\gamma = 1$,所以$C(n) = n$。
最后令${R_n} = {n^2}$,可以得到$\alpha = 0,\beta = 2,\gamma = - 1$,所以$2B(n) - C(n) = {n^2}$,所以$B(n) = ({n^2} + n)/2$
再来一个更复杂的递推式:
\[\begin{array}{l}{R_0} = \alpha \\{R_n} = 2{R_{n - 1}} + \beta n + \gamma \end{array}\]
同样的方法,设
\[{R_n} = A(n)\alpha + B(n)\beta + C(n)\gamma \]
首先令${R_n} = 1$,可以得到$\alpha = 1,\beta = 0,\gamma = -1$,所以$A(n) - C(n) = 1$。
再令${R_n} = n$,可以得到$\alpha = 0,\beta = -1,\gamma = 2$,所以$2C(n) - B(n) = n$。
这时候能不能令${R_n} = {n^2}$呢?答案是不能,因为如果${R_n} = {n^2}$,那么
\[{n^2} = 2{(n - 1)^2} + \beta n + \gamma \]显然不可能成立。
观察系数,可以令${R_n} = 2^n$,可以得到$\alpha = 1,\beta = 0,\gamma = 0$,所以$A(n) = 2^n$。
所以
\[A(n) = {2^n},B(n) = {2^{n + 1}} - n + 2,C(n) = {2^n} + 1\]